Some Midterm 2 Review

Questions

Question 1. Evaluate the limit if it exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{4}+y^{4}}
$$

Question 2. Suppose $f(x, y)$ is a differentiable function and $g(u, v)=f\left(e^{u}+\cos v, e^{u}+\sin v\right)$. Use the values below to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$.

$$
\begin{array}{llll}
f(0,0)=3 & g(0,0)=6 & f_{x}(0,0)=4 & f_{y}(0,0)=8 \\
f(1,2)=6 & g(1,2)=3 & f_{x}(1,2)=2 & f_{y}(1,2)=5
\end{array}
$$

Question 3. Let $f(x, y)=\sqrt{x y}$.
(a) Compute the gradient of f.
(b) Find the equation of the tangent plane to the graph $z=f(x, y)$ when $(x, y)=(2,8)$.
(c) Find the directional derivative of $f(x, y)$ at $P(2,8)$ in the direction towards the point $Q(5,4)$.

Question 4. Find and classify the critical points of the function

$$
f(x, y)=\sin x \sin y
$$

Question 5. Find and classify the critical points of the function

$$
f(x, y)=x^{2}-4 x-y^{4}
$$

Question 6. Let x, y, z denote the side lengths of a triangle. Heron's formula says that the area of the triangle is

$$
A=\sqrt{s(s-x)(s-y)(s-z)}
$$

where s is the semiperimeter $s=\frac{1}{2}(x+y+z)$.
Show that if s is fixed, A is maximized when $x=y=z$ (meaning that the triangle is equilateral).
Question 7. Find the absolute maxima and minima of the function $f(x, y)=x y^{2}$ on the region $x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3$.

